Extensions 1→N→G→Q→1 with N=C22 and Q=C22×C18

Direct product G=N×Q with N=C22 and Q=C22×C18
dρLabelID
C24×C18288C2^4xC18288,840

Semidirect products G=N:Q with N=C22 and Q=C22×C18
extensionφ:Q→Aut NdρLabelID
C22⋊(C22×C18) = C23×C3.A4φ: C22×C18/C22×C6C3 ⊆ Aut C2272C2^2:(C2^2xC18)288,837
C222(C22×C18) = D4×C2×C18φ: C22×C18/C2×C18C2 ⊆ Aut C22144C2^2:2(C2^2xC18)288,368

Non-split extensions G=N.Q with N=C22 and Q=C22×C18
extensionφ:Q→Aut NdρLabelID
C22.1(C22×C18) = C9×2+ 1+4φ: C22×C18/C2×C18C2 ⊆ Aut C22724C2^2.1(C2^2xC18)288,371
C22.2(C22×C18) = C9×2- 1+4φ: C22×C18/C2×C18C2 ⊆ Aut C221444C2^2.2(C2^2xC18)288,372
C22.3(C22×C18) = C22⋊C4×C18central extension (φ=1)144C2^2.3(C2^2xC18)288,165
C22.4(C22×C18) = C4⋊C4×C18central extension (φ=1)288C2^2.4(C2^2xC18)288,166
C22.5(C22×C18) = C9×C42⋊C2central extension (φ=1)144C2^2.5(C2^2xC18)288,167
C22.6(C22×C18) = D4×C36central extension (φ=1)144C2^2.6(C2^2xC18)288,168
C22.7(C22×C18) = Q8×C36central extension (φ=1)288C2^2.7(C2^2xC18)288,169
C22.8(C22×C18) = Q8×C2×C18central extension (φ=1)288C2^2.8(C2^2xC18)288,369
C22.9(C22×C18) = C4○D4×C18central extension (φ=1)144C2^2.9(C2^2xC18)288,370
C22.10(C22×C18) = C9×C22≀C2central stem extension (φ=1)72C2^2.10(C2^2xC18)288,170
C22.11(C22×C18) = C9×C4⋊D4central stem extension (φ=1)144C2^2.11(C2^2xC18)288,171
C22.12(C22×C18) = C9×C22⋊Q8central stem extension (φ=1)144C2^2.12(C2^2xC18)288,172
C22.13(C22×C18) = C9×C22.D4central stem extension (φ=1)144C2^2.13(C2^2xC18)288,173
C22.14(C22×C18) = C9×C4.4D4central stem extension (φ=1)144C2^2.14(C2^2xC18)288,174
C22.15(C22×C18) = C9×C42.C2central stem extension (φ=1)288C2^2.15(C2^2xC18)288,175
C22.16(C22×C18) = C9×C422C2central stem extension (φ=1)144C2^2.16(C2^2xC18)288,176
C22.17(C22×C18) = C9×C41D4central stem extension (φ=1)144C2^2.17(C2^2xC18)288,177
C22.18(C22×C18) = C9×C4⋊Q8central stem extension (φ=1)288C2^2.18(C2^2xC18)288,178

׿
×
𝔽